

High-power diode laser bars: 808 nm, 200 W qcw

JDL-BAB-75-62-808-TE-200-1.0

Features

- High laser power
- High efficiency
- Long lifetime, high reliability
- Excellent beam characteristics

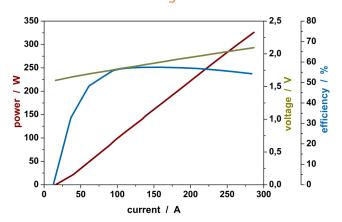
Applications

- Pumping of solid-state lasers and fiber lasers
- Industrial, scientific and medical systems
- Printing industry
- Defense and security

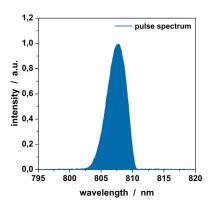
High-power diode laser bars | 808 nm, 200 W qcw

JDL-BAB-75-62-808-TE-200-1.0

Specifications	JDL-BAB-75-62-808-TE-200-1.0				
Operation*	Symbol	Min	Nom	Max	Unit
Wavelength (qcw)	λ	805	808	811	nm
Optical Output Power	Pont		200		W
Operation Mode			pulsed		
Power Modulation			100		%
Geometrical					
Number of Emitters			62		
Emitter Width	W	90	100	110	μm
Emitter Pitch	P		150		μm
Filling Factor	F		75		%
Bar Width	В	9600	9800	10000	μm
Cavity Length	L	9 80	1000	1 0 20	μm
Thickness	D	115	120	125	μm
Electro Optical Data*					
Fast Axis Divergence (FWHM)	θ_{\perp}		36	39	0
Fast Axis Divergence**	θ_{\perp}		65	68	0
Slow Axis Divergence at 300 W (FWHM)	θμ		8	9	0
Slow Axis Divergence at 300 W**	θ		10	11	0
Pulse Wavelength	λ	805	808	811	nm
Spectral Bandwidth (FWHM)	Δλ		3	5	nm
Slope Efficiency***	η	1.15	1.25		W/A
Threshold Current	I _{th}		20	25	A
Operating Current	l _{op}		262	285	Α
Operating Voltage	V _{op}		2.1	2.2	V
Series Resistance	R _s		3	4	mΩ
Degree of TE Polarization	α	98			%
EO Conversion Efficiency***	η_{tot}	52	55		%


^{*} Mounted on a heat sink with Rth = 0.7 K/W, coolant temperature 25 °C, operating at nominal power, 200 µsec pulse length and 4 % duty cycle

Note: Nominal data represents typical values. Safety Advice: Laser bars are the active components in


Laser bars are the active components in high-power diode lasers in accordance to IEC standard class 4 laser products.

As delivered, laser bars cannot emit any laser beam. The laser beam can only be released if the bars are connected to a source of electrical energy. In this case, IEC-Standard 60825-1 describes the safety regulations to be taken to avoid personal injury.

Power - Current - Voltage - Characteristics*

Spectral Characteristics*

JENOPTIK Diode Lab GmbH | Max-Planck-Strasse 2 12489 Berlin | Germany

Sales contact:

JENOPTIK Laser GmbH Phone +49 3641 65-3053 | Fax +49 3641 65-4011 laser.sales@jenoptik.com | www.jenoptik.com

^{**} Full width at 95 % power content

^{***} Item may change upon notice and acceptance by JENOPTIK Diode Lab GmbH, due to future improvements of technology or processing