Features
- Optical output power: 1,000mW (CW)
- Violet Lasing: 405nm Typ.
- Low operating current: 1,000mA Typ.
- Low operating voltage: 5.0V Max.
- Package: ø9.0mm
- Multiple transverse mode
- TE mode oscillation

Application
- Direct imaging for PCB
- Industry
- Display
- Bio & Medical
Absolute Maximum Ratings (Tc=25°C)

<table>
<thead>
<tr>
<th>Item</th>
<th>Symbol</th>
<th>Ratings</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optical output power</td>
<td>Po</td>
<td>1,100</td>
<td>mW</td>
</tr>
<tr>
<td>LD Reverse Voltage</td>
<td>VR(LD)</td>
<td>2</td>
<td>V</td>
</tr>
<tr>
<td>Operating Temperature</td>
<td>Topr</td>
<td>0 ~ +30</td>
<td>°C</td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>Tstg</td>
<td>-40 ~ +85</td>
<td>°C</td>
</tr>
</tbody>
</table>

Optical and Electrical Characteristics (Tc=25°C)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
<th>Test Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Threshold current</td>
<td>Ith</td>
<td>250</td>
<td>320</td>
<td>400</td>
<td>mA</td>
<td>-</td>
</tr>
<tr>
<td>Operating current</td>
<td>Iop</td>
<td>-</td>
<td>1,000</td>
<td>1,300</td>
<td>mA</td>
<td>Po=1,000mW</td>
</tr>
<tr>
<td>Operating voltage</td>
<td>Vop</td>
<td>-</td>
<td>-</td>
<td>5.0</td>
<td>V</td>
<td>Po=1,000mW</td>
</tr>
<tr>
<td>Beam divergence Parallel to the junction</td>
<td>θ//</td>
<td>5</td>
<td>13</td>
<td>25</td>
<td>°</td>
<td>Po=1,000mW, Full angle 1/e²</td>
</tr>
<tr>
<td>Beam divergence Perpendicular to the junction</td>
<td>θ⊥</td>
<td>30</td>
<td>42</td>
<td>50</td>
<td>°</td>
<td>Po=1,000mW, Full angle 1/e²</td>
</tr>
<tr>
<td>Lasing Wavelength</td>
<td>λp</td>
<td>400</td>
<td>405</td>
<td>410</td>
<td>nm</td>
<td>Po=1,000mW</td>
</tr>
</tbody>
</table>
Typical Characteristic Curves

Optical output power vs. Forward current

- Optical output power P_o (mW) vs. Forward current I_F (mA)

Forward voltage vs. Forward current

- Forward voltage V_F (V) vs. Forward current I_F (mA)

Threshold current vs. Case temperature

- Threshold current I_{th} (mA) vs. Case temperature T_c (°C)

Slope efficiency vs. Case temperature

- Slope efficiency η_s (mW/mA) vs. Case temperature T_c (°C)

Lasing wavelength vs. Case temperature

- Lasing wavelength λ_p (nm) vs. Case temperature T_c (°C)

Far field pattern

- Relative intensity vs. Angle θ (°)

Po=1,000mW
$T_c=25$°C

Parallel, Perpendicular

Po=1,000mW
$T_c=25$°C

Parallel, Perpendicular
Cautions

1. Ushio Inc. (Ushio) neither warrants nor grants licenses of any our lights or any third party’s patent, copyright, trademark, or other intellectual property rights for information contained in this document. Ushio bears no responsibility for problems that may arise with third party’s right, including intellectual property rights, in connection with use of the information contained in this document.

2. Products and product specifications may be subject to change without notice. Confirm that you have received the latest product standards or specifications before final design, purchase or use.

3. Ushio makes every attempt to ensure that its products are of high quality and reliability. However, contact our sales office before using the product in an application that demands especially high quality and reliability or where its failure or malfunction may directly threaten human life or cause risk of bodily injury, such as aerospace, aeronautics, nuclear power, combustion control, transportation, traffic safety equipment or medical equipment for life support.

4. Design your application so that the products is used within the ranges guaranteed by Ushio. particularly for maximum rating, operating supply voltage range, heat radiation characteristics, installation conditions and other characteristics. Ushio bears no responsibility for failure or damage when used beyond the guaranteed ranges. Even within the guaranteed ranges, consider normally foreseeable failure rates or failure modes in semiconductor devices and employ systemic measures such as fail-safes, so that the equipment incorporating Ushio product does not cause bodily injury, fire or other consequential damage due to operation of the Ushio product.

5. This product is not designed to be radiation resistant.

6. No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without written approval from Ushio.

7. Contact our sales office for any questions regarding this document or Ushio products.

Important Notice

Performance figures, data and any illustrative material provided in this data sheet are typical and must be specifically confirmed in writing by Ushio before they become applicable to any particular order or contract. In accordance with the Ushio policy of continuous improvement specifications may change without notice. Further details are available from any Ushio sales representative.

CAUTION

Caution - use of controls or adjustments or performance of procedures other than those specified herein may result in hazardous radiation exposure.
Disclaimer

Product specifications and data shown in this product catalog are subject to change without notice for the purposes of improving product performance, reliability, design, or otherwise.

Product data and parameters in this catalog are typical values based on reasonably up-to-date measurements.

Product data and parameters may vary by user application and over time.

Products shown in this catalog are intended to be used for general electronic equipment. Products are not guaranteed for applications where product malfunction or failure may cause personal injury or death, including but not limited to life-supporting / saving devices, medical devices, safety devices, airplanes, aerospace equipment, automobiles, traffic control systems, and nuclear reactor control systems.